dtr = DecisionTreeRegressor() dtr.fit(X_train,Y_train) y_pred = dtr.predict(X_test) y_pred_dt=dtr.predict(test) submission['Purchase'] = y_pred_dt submission.to_csv('dtr_model3.csv',index=False) mse = mean_squared_error(Y_test, y_pred) print("RMSE Error:", np.sqrt(mse)) r2 = r2_score(Y_test, y_pred) print("R2 Score:", r2) feature_important = dtr.get_score(importance_type='gain') keys = list(feature_important.keys()) values = list(feature_important.values()) total = sum(values) new = [value * 100. / total for value in values] new = np.round(new,2) feature_importances = pd.DataFrame() feature_importances['Features'] = keys feature_importances['Importance (%)'] = new feature_importances = feature_importances.sort_values(['Importance (%)'],ascending=False).reset_index(drop=True) feature_importances feature_importances.style.set_properties(**{'font-size':'10pt'})